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Abstract. This paper formulates the minimum concave cost network flow (MCCNF) problem as a 
mixed integer program and solves this program using a new branch and bound algorithm. The 
algorithm combines Driebeek's "up and down" penalties with a new technique referred to as the 
simple bound improvement (SBI) procedure. An efficient numerical method for the SBI procedure is 
described and computational results are presented which show that the SBI procedure reduces both 
the in-core storage and the CPU time required to solve the MCCNF problem. In fact, for problems 
with over 200 binary decision variables, the SBI procedure reduced the in-core storage by more than 
one-third and the CPU time by more than 40 percent. 
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1. Introduction 

This paper examines minimum concave cost network flow (MCCNF) problems; 
that is, problems wherein the marginal cost of carrying flow on an arc decreases as 
the volume of flow on that arc increases (see Figure 1). This type of cost 
funct ion-  representing quantity discounting, volume-based price incentives, and 
other forms of scale economies - is a salient feature of many problems involving 
the transport of people, commodities, or information [17]. Moreover, facility 
location, network design, and other types of network flow problems involving 
fixed charges can also be modelled as MCCNF problems. 

It is well-known that the general MCCNF problem is NP-hard [14]. The 
complexity of the problem arises from the fact t ha t -  although a minimum cost 
solution (if one exists) always occurs at an extreme point of the feasible region 
[36] -identification of the optimal point requires, in the worst case, a complete 
enumeration of all extreme points in the feasible region. Thus, except in special 
cases, exact algorithms for the MCCNF problem run in exponential time. 

Very efficient methods for solving network flow problems with c o n s t a n t  margin- 
al costs have been available since the early 1960's [12]. However, MCCNF 
problems, being much harder to solve, require specialized solution procedures. 
Guisewite and Pardalos [18, 19, 20, 21] discuss recent algorithmic developments 
for MCCNF problems. In general, solution methods for MCCNF problems can be 
grouped into three categories: (1) heuristic procedures; (2) dynamic programming 
methods; and (3) branch and bound procedures. Heuristic procedures are applic- 
able to MCCNF problems with an arbitrary network topology, but they do not 
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Fig. 1. Typical arc cost function. 
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provide a measure of quality (i.e., near-optimality) of the solution obtained. Just 
the reverse is true for dynamic programming approaches. They provide exact 
results, but are efficient only for applications involving a limited number of supply 
and/or demand points (e.g., economic lot-sizing problems). Finally, branch and 
bound procedures have the dual advantage of providing exact results and being 
applicable to MCCNF problems with arbitrary network topologies. But, because 
the enumeration tree grows exponentially with problem size, very efficient 
bounding techniques are required when branch and bound procedures are used to 
solve MCCNF problems. 

This paper presents a new bounding technique, referred to as the "simple 
bound improvement" (SBI) procedure, for the MCCNF problems comprised of 
piecewise-linear-concave arc cost functions. The SB] procedure is of theoretical as 
well as practical interest because it can reduce both the time and the in-core 
memory required to solve MCCNF problems using a branch and bound proce- 
dure. The majority of this paper is devoted to a formal description of the SBI 
procedure and its role in solving MCCNF problems. The concept underlying this 
method, however, can be stated very simply. Each arc in a network has a lower 
(possibly zero) and upper (possibility infinity) bound on the flow that can be 
carried on that arc. If these bounds can be made tighter, then the feasible solution 
space of the problem is reduced. The "trick" to the SBI procedure is to tighten 
these bounds as much as possible while, at the same time, ensuring that these 
improved bounds do not "cut off" the optimal flow on any of the arcs in the 
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network. By using this method, larger MCCNF problems can be solved more 
efficiently. 

This paper is organized as follows. Section 2 formulates a family of mixed 
integer programs representing a generic subprogram in a branch and bound 
enumeration tree. The linear programming relaxation of a subprogram is charac- 
terized in Section 3. This section also discusses postoptimality analysis of a 
subprogram relaxation. Sections 4 through 6 discuss a trilogy of algorithms used 
to solve the MCCNF problem. Section 4 specializes Driebeek's [9] "up and 
down" penalties for a generic subprogram of the MCCNF problem. These 
penalties form part of the SBI procedure presented in Section 5. In this section, 
conceptual as well as computational aspects of the SBI method are discussed. The 
SBI procedure, in turn, forms part of the branch and bound algorithm outlined in 
Section 6. Section 7 presents some computational results demonstrating that the 
SBI procedure accelerates the branch and bound algorithm. Finally, Section 8 
summarizes the paper and suggests several possible extensions of the SBI 
procedure. 

2. Mixed Integer Programming Subprogram 

The mixed integer programming formulation developed in this section represents 
a generic subprogram in a branch and bound procedures that is used to solve the 
minimum concave cost network flow (MCCNF) problem. However, in contrast to 
the standard branch and bound procedure (where there is a one-to-one corre- 
spondence between subprograms and nodes in an enumeration tree), the branch 
and bound method presented in this paper associates an entire family of sub- 
programs with each node in the enumeration tree. This family of mixed integer 
programming subprograms is denoted by MIP k where the superscript k (k = 0, 1, 
2 , . . .  ) is an index number that identifies an individual subprogram within this 
family. For each family of subprograms, we refer to MIP ~ as the "initial" 
subprogram. The initial subprogram at the root node in the enumeration tree is 
the original problem, MCCNF. 

Below, we define notation and formulate a generic subprogram, MIP k. 
To describe the network topology used with each subprogram, let NODE 

denote the node set (with generic element n) and let ARC denote the arc set 
(with generic element i). For each i E ARC, let TAIL i and HEADi denote, 
respectively, the tail and head nodes for arc i. For each n E NODE, let LEAVE n 
denote the set of arcs whose tail node is n, let ENTER n denote the set of arcs 
whose head node is n, and let d n denote the net demand (i.e., d n < 0) or supply 
(i.e., d n >  0) at node n. Note that the network topology descriptors defined above 
are not indexed by k. 

For each i E ARC, COST i denotes the cost function for arc i. We assume that 
COST~ is a concave nondecreasing function consisting of two piecewise linear 
segments with marginal costs ai and b~, respectively (see Figure 1). [Although the 
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MCCNF problem formulated in this paper consists of arc cost functions with, at 
most,  two piecewise linear segments, generalization to more than two segments is 
straightforward.] We assume that a~ i> b i ~ 0. In addition, we let mi denote the 
flow "breakpoint"  at which the marginal cost of COSTi switches from a~ to bi. We 
assume that m~ is a nonnegative integer. Note that the cost function parameters 
given above also are n o t  indexed by k. 

The lower and upper flow bounds for arc i in program MIP k, however,  are 

indexed by k. These bounds are denoted by I k and u kg, respectively. We assume 
that these bounds are integers and that 0 ~< l k ~< m i ~< u k. [Note that this latter 
assumption is not restrictive because if l k > mi or u k < m~, then arc i will have a 
constant marginal cost in program MIP k so m i can be reset to l~ or u/g in COSTr ]  
It is also useful to define the following two flow interval coefficients (see Figure 
1): 

g/k = m i _  l/k Vi ~ A R C ,  ( la)  

h k = u ~ - - m ~  Vi ~ A R C .  ( lb)  

By construction, gk and h~ are nonnegative integers. 
For  each arc i ~ ARC in program MIP*, one binary and three continuous 

decision variables are defined. The binary variable, denoted y~, specifies whether  
the applicable marginal cost of function COST~ is a i (if yi = 0) or b~ (if y~ = 1). We 
also partit ion the arc set ARC into three disjoint, collectively exhaustive subsets: 
Z E R O ,  ONE,  and FREE.  The value of y~ depends, in part ,  upon which subset 
arc i is a member.  If i ~ Z E R O ,  then y~ is fixed at zero; if i ~ ONE,  then Yi is 
fixed at one; and if i ~ FREE,  then yz may assume either value. 

The continuous variables for i E ARC,  denoted xi ,  v~, and w~, measure the 
level of flow carried on arc i. Decision variable x i gives the total flow on arc i. 
This total flow is the sum of two components: (1) decision variable vi (represent- 
ing the flow carried on arc i at a marginal cost of ai); and (2) decision variable w, 
(representing the flow carried on arc i at a marginal cost of bi) .  For purposes of 
formulating the problem, we represent each arc i E A RC as a pair of parallel arcs, 
one for each of the flow components defined above (see Figure 2). Note  that 
i E Z E R O  implies that x i <~ m i ,  and that i E ONE implies that x~ >I m r 

The  formulation also uses an arc flow set, denoted by F LO W  k, which represents 
the set of arc flow vectors ,  x = ( . . . ,  x i , . . . ) ,  that conform to the following 
capaeitated flow balance equations: 

E X i - -  

i E L E A V E  n 

I k ~< x; ~< m~ 

k 
m i <~ x i <~ u i 

x i = d,, Vn ~ N O D E ,  (2a) 
i ~ E N T E R  n 

Vi E Z E R O ,  (2b) 

Vi E O N E ,  (2c) 

Vi E F R E E .  (2d) 
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Fig. 2. Parallel arc representation. 

We now formulate MIP k, a generic subprogram of the minimum concave cost 
network flow problem considered in this paper. 

Program MIPk: 

Min ~ ( a  i " o i -t- b e �9 w i )  
xEFLOWk iEARC 

Subject to: 

O i -Jr- W i = X i 

lki + gki " Yi <~ Vi <~ mi 

0 <<- w i ~ h~. y~ 

Y i  "= 0 

y i  = 1 

y~ E {0, 1} 

(3a) 

Vi E ARC (3b) 

Vi E ARC (3c) 

Vi E ARC (3d) 

Vi E Z E R O  (3e) 

Vi E ONE (3f) 

Vi ~ F R E E .  (3g) 

Objective function (3a) minimizes the total cost of carrying flow in the network. 
Performing this minimization over the set FLOW k ensures that only feasible flow 
patterns are considered. Constraint (3b) establishes the conservation of flow for 
the parallel arc representation for each arc i E ARC (see Figure 2). Because 
COST i is a concave function, the marginal cost of arc i must be nonincreasing as 
the flow on arc i increases. This requirement is enforced by constraints (3c) and 
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(3d), which guarantee that w i = 0 if V/ < m i. Finally, constraints (3e) through (3g) 
identify the restrictions placed on the binary decision variables in subprogram 
MIP k. [The nonnegativity conditions for the continuous decision variables are 
implicitly enforced by constraints (2b) through (2d), (3c), and (3d).] 

For any program P, let FEASIBLE[P], SOLUTION[P], and OBJFCTN[P] 
denote, respectively, the feasible region, the optimal solution vector, and the 
optimal objective function value for that program. Thus, for subprogram MIP k, 
this information is denoted by FEASIBLE[MIPk], SOLUTION[MIpk], and 
OBJFCTN[MIPk]. Also, let the optimal value of an individual decision variable 
be denoted by the symbol for that variable followed by the name of the program 
(in square brackets) for which that decision variable is optimal. Thus, for each arc 
i in subprogram MIP k, the optimal value of the decision variables is denoted by 
Yi[MIPk], xi[MIP~], vi[MIPk], and wi[MIPk]. 

Mixed integer programming formulations used in implicit enumeration proce- 
dures for concave cost networks with arbitrary topologies have also been de- 
veloped by Balakrishnan [2], Florian and Robillard [11], Lamar [24], Lamar and 
Sheffi [26], and Los and Lardinois [29]. Formulations and branch bound algo- 
rithms for fixed charge transportation (i.e., bipartite) network flow problems- 
originally formulated by Balinski [3]-  have been developed by Burr et  al. [5], 
Cabot and Erenguc [7], Gray [16], and Kennington and Unger [23]. Florian and 
Robillard [11] and Malek-Zavarei and Frisch [30] have shown the equivalence 
between bipartite and arbitrary network topologies for MCCNF problems (also 
see [10]). Gallo et  al. [13], and Guisewite and Pardalos [18, 19] considered 
networks with a single source node; Afentakis et  al. [1] applied a branch and 
bound algorithm to a lot sizing problem involving concave costs; and Sa [32] and 
Soland [33] used branch and bound methods for plant location problems with 
concave production, holding, and/or transportation costs. See Guisewite and 
Pardalos [17] for a comprehensive survey. 

The structure of the linear programming relaxation of subprogram MIP k is 
examined next. 

3. Linear Programming Relaxation 

It is well known (see, for example, [35]) that a lower bound to OBJFCTN[MIP k] 
can be obtained by solving a linear program in which, for each arc i ~ ARC, 
COST i is replaced with a the  linear underestimator of COSTi (see Figure 1). 
Moreover, because this linear program is a minimum (linear) cost network flow 
problem, it can be solved very efficiently. The contribution of this section is to 
show that the linear program described above is equivalent to the linear program 
formed by relaxing the integrality requirements in subprogram MIP k, thereby 
establishing the tightness of the lower bound obtained by using a linear undere- 
stimator of a concave cost function. This work extends Balinski's [3] results for 
fixed charge problems to a more general class of problems. 
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The material in this section is divided into two parts. The first part shows the 
equivalence between alternative linear programming representations and the 
second part discusses postoptimality analysis. This analysis is used later in this 
paper to develop tight bounds to OBJFCTN[MIpk]. 

3.1. EQUIVALENT FORMULATIONS 

We begin by formulating the linear programming relaxation of subprogram MIP k. 
This relaxation, denoted LP k, is formed simply by replacing the binary constraints 
(3g) with the following nonnegativity conditions: 

0<~yi ~<1 V i E F R E E .  (4) 

Let FEASIBLE[LP~], SOLUTION[Lpk], and OBJFCTN[LP k] denote, respec- 
tively, the feasible region, optimal solution vector, and the optimal objective 
function value for program LP k. Also, for each arc i, let yi[LPk], xi[LPk], vi[Lpk], 
and wi[LP k] denote the optimal value of the decision variables in program LP k. 

Relaxation LP k has the property that, if the total flow on each arc i E ARC is 
given (i.e., fixed), then program LP k separates by arc and the optimal value of the 
other decision variables associated with each arc i can be obtained by inspection. 
Thus, we can conceptualize a solution procedure for program LP k as follows: for 
each feasible flow vector in FLOW k, solve a separate linear program for each arc 
in ARC; then select, from among this (possibly infinite) set of flow vectors, the 
one that minimizes the total cost. As shown below, this solution method is 
equivalent to solving a linear cost network flow problem in which the cost for arc i 
is taken as the linear underestimator of COST v 

The concept outlined in the preceding paragraph can be expressed algebraically 
by representing the linear programming relaxation of subprogram MIP k in the 
following equivalent form: 

Program Lpk: 

Min ~ (bi" xi + OBJFCTN[FIXLP~]). (5) 
x C F L O W  k i C A R C  

Here, OBJFCTN[FIXLP~] is the optimal objective function value of the following 
linear program for arc i in which x i (the total flow on arc i) is considered fixed: 

Program FIXLP~: 

Min (a i - b i ) .  v i (6a) 

Subject to: 

vi ~ mi (6b) 

-gki " Yi + vi >~ l~i (6c) 

h~.  Yi + vi >~ xi (6d) 
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[3 i ~ X i (6e) 

Yi  >~ P i  (6f) 

Yi  <~ qi  (6g) 

where Pi and q~ are parameters such that p~ = 0 if i E Z E R O  U FREE;  P i  = 1 if 
i ~ O N E ;  q~=0  if i E Z E R O ;  and q i = l  if i ~ O N E U F R E E .  We refer to 
program (6) as the "fixed flow" linear program. Note that there is a separate 
program for each arc i E A R C  and that x~ is considered a constant in each of these 
programs. The fixed flow program for arc i is composed of the constraints and 
objective function terms involving arc i in program LP k. Constraints (6b) and (6c) 
correspond to constraint (3c); constraints (6d) and (6e) correspond to constraint 
(3d); and constraints (6f) and (6g) correspond to constraints (3e) through (3g). 
Note,  however,  that decision variable w i has been eliminated from the fixed flow 
program by substituting x ~ -  v i for w i (see eq. (3b)). Thus, w i can also be 
interpreted as the slack variable associated with constraint (6e). Because w i has 
been eliminated and xi is considered a constant, each fixed flow linear program 
involves only two decision variables: y~ and v~. 

Program FIXLP~ has been expressed in the form given above because its 
optimal solution can be obtained by inspection. If i E Z E R O ,  then it is clear that 
the fixed flow program is feasible only if l~ ~< xg ~< rni; and if the program is 
feasible, then the optimal solution is 

yi[FIXLpkl = 0 

vi[FIXLP/k] = x i 

wiIFIXLP k] = 0 

(7a) 

(7b) 

(7c) 

Similarly, if i ~ ONE,  then the fixed flow program is feasible only if m i ~ X i <~ U~[, 

in which case the optimal solution is 

y,[FIXLP~] = 1 

vi[FIXLP k] = m i 

w~[FIXLP~] = xe - m~. 

(8a) 

(8b) 

(8c) 

Finally, if i E F R E E ,  then the fixed flow program will be feasible only if 
l/g <~ x i <~ u/k. Figure 3 shows a typical feasible region for program FIXLP~ for the 
case where i E FREE.  Observe that, because of the concavity assumption for the 
cost function COSTi, the coefficient ( a / -  bi) in objective function (6a) is always 
nonnegative. This means that, if program FIXLP k is feasible, then an optimal 
solution a l w a y s  occurs at the extreme point in which constraints (6c) and (6d) are 
binding (see point 1 in Figure 3). Thus, these two constraints (taken as 
equalities), together with equality (3b), can be used to determine the optimal 
value of the decision variables. We consider two possible cases. On the one hand, 
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Fig. 3. Typical feasible region for fixed flow program. 

if g~ + h~ equals zero, then the fixed flow program is feasible only if x i = m i and 
the value of Yi  is arbitrary. Thus, in this case, the optimal solution to the program 
can be expressed using either (7) or (8). On the other hand, if gig + h~ is nonzero, 
then we can solve explicitly for Y i ,  ~  and w~. This yields, 

x i - l~i 
Y~[FIXLP/k] = --~-+ 7-~ (9a) 

gi rti 

o,[VIXLP~] : g~i . x i  + h~ . I f  
g/k + h~ (98) 

w i [ r I x L P ~ ]  - h~.  (xi - t~) 
g/k + h--/~ (9c) 

Observe that, if the RHS of eq. (7b), (8b), or (9b) is substituted for v i in eq. 
(6a), then eq. (5) can be expressed solely in terms of the total arc flow decision 
variables {x~}. This substitution can be expressed compactly by defining the 
following new parameters: 

a i if i E Z E R O  or g/~ + h/k = 0 
b~ if i E ONE and g~ + h~ ~ 0 

ck = ai  " g ~  + b l  " hki (10a) 
k gi + h~ if i E F R E E  and g~ + h~ ~ 0 
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0 if i C ZERO or gk + hl = 0 
f i =  ( a i - b i ) ' m i  i f i E O N E a n d g i g + h ~ r  (10b) 

(a i - c l ) . l~  if i E FREE and gig + h i r  

These two parameters can be interpreted as the slope and intercept, respectively, 
of the line representing the linear underestimator of function COST~ over the 
feasible domain of x~ (see Figure 1). Using these parameters, eq. (5) can be 
reexpressed as the following program: 

Program Lpk: 

f ~ +  Min ~] c/k.x~. (11) 
i d E A R C  x E F L O W  k i ~ A R C  

Observe that three equivalent forms of the linear programming relaxation of 
subprogram MIP k have been presented: 

(1) Eq. (3a) through 3f and (4), 
(2) Eq. (5) and (6), and 
(3) Eq. (11). 

The formulation given in eq. (11) is preferred, however, because it is clear from 
the form of this expression, that the linear programming relaxation of MIP k is 
simply a minimum (linear) cost capacitated network flow model, plus an objective 
function constant term (P, f l ) .  By using special tree labeling techniques (see, for 
example, [4]), program LP k can be solved very efficiently. Moreover, eq. (11) 
establishes that the lower bound to OBJFCTN[MIP k] obtained by using the linear 
underestimator of COST~ is as tight as OBJFCTN[Lpk]. 

In subsequent sections of this paper, two procedures are presented for obtain- 
ing a tighter lower bound to OBJFCTN[MIpk]. Both of these methods are based 
on an incremental change of flow from the optimal solution of program LP k. As 
shown in the next subsection, the effects of these changes can be determined 
directly from the solution to LP k. 

3.2. POSTOPTIMALITY FLOW ANALYSIS 

To evaluate the effect of an incremental change of flow on arc i in program LP k, 
we consider a new linear program, denoted POSTOPTLPI, formed by adding the 
single constraint 

X i = xi[LP k] + 6 i (12) 

to program LP k. Here, xi[LP k] is the optimal value of decision variable xi in 
program LP k and 6 i is a fixed number. Becauseprogram POSTOPTLP i is of the 
form of a network flow program augmented by a single side constraint, it could be 
evaluated by the methods proposed by Belling-Seib et al. [6] or Glover et al. [15]. 
However, assuming no change in basis, the effect of constraint (12) can be 
determined directly from the optimal solution to program LP k. 

To describe this effect, let a~ denote the rate of increase in OBJFCTN 
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[POSTOPTLP/k] as 62 changes from 0 to 0-  (i.e., to a small negative value) and 
let /3/~ denote the rate of increase in OBJFCTN[POSTOPTLP/~] as 6/k changes 
from 0 to 0 + (i.e., to a small positive value). [Typical values of these rates of 
increase (i.e., slopes) are shown in Figure 4.] In addition, let 7r~ denote the 
optimal value of the dual variable in program LP k associated with node n in the 
flow balance equation (2a), and let 

k k (13) r~ = c~ + " W T A I L  ~ - -  " I ' F H E A O  ~ 

denote the reduced cost associated with decision variable x i in the optimal 
solution to program LP k. The effect of constraint (12) depends on whether x i is a 
basic or nonbasic decision variable. Thus, let BASIC k denote the set of arcs 
i E ARC such that x i is basic in the optimal solution in program LP k and let 
NONBASIC k = ARC - BASIC k. 

If  i E BASIC k, then arc i must be part of a basis-equivalent spanning tree 
representing the basic solution to program LP k [22]. If arc i were omitted from 
this spanning tree, two disjoint subtrees would be created, one containing TAIL i 
(the tail node of arc i) and the other containing H E A D  i (the head node of arc i). 
Let  T~ and H i denote, respectively, the subtrees containing node TAlL  i and 
H E A D  i. As summarized in Table I, we now define four (disjoint but not 
collective exhaustive) subsets of the arcs contained in NONBASIC k. Table I 
shows, for example, that THL~ is the set of arcs j @ NONBASIC k such that node 

O B J F C l ~ I ~ o s ' / ~ F r I ~  ] 

Z 
I N C  

0 BJFUI"N ['LP/r i 

''""........ 

1-+1 0 k§ 
u I - x ILl ,/" ] 

Fig. 4. Typical postoptimal flow analysis for linear relaxation. 
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Table I. Nonbasic arc subsets in postoptimal flow analysis 

Arc subset Subtree containing Subtree containing Arc flow 
name tail node head node 

THL/k T k H~ lower bound 
THU k T/k H k upper bound 
HTL k Hy T k lower bound 
HTU~ H k T k tipper bound 

TAILj  is contained in subtree T k i ,  node H E A D j  is contained in H k, and xflLP k] 
�9 . .  k �9 k (the optimal flow on arc I in program LP ) Is equal to lj .  

Assuming no change in basis, observe that if i ~  BASIC k, then a unit decrease 

in the flow on arc i requires either (1) a unit increase in flow on an arc contained 
in arc subset THL~; or (2) a unit decrease in flow on an arc contained in arc 
subset H T U  k. So, the minimum cost way of forcing this change of flow on arc i is 
expressed by the minimum (absolute value) reduced cost of the arcs contained in 
subsets T H L  k and HTU/k. 

On the other hand, if i E NONBASIC k, then it must be the case that either (1) 
x i [ L P  k] = l k �9 i ,  or (2) xi[LP k] = u k. If xi[LP k] is at its lower bound, then clearly the 

flow on arc i cannot be decreased; and if x i [LP  k] is at its upper bound, then, 
assuming no change in basis, the minimum cost for a unit decrease in the flow on 
arc i is simply (the absolute value of) the reduced cost for arc i. 

Thus, a ~, the rate of increase in OBJFCTN[POSTOPTLP~]  as 6 k (in constraint 
(12)) changes from 0 to 0-, is given by 

l" 
M in(Ir l: j E T H L / k U H T U ~ }  i f i E B A S I C  k 

a~ = ~ if i E NONBASIC k and x~[LPkl = l~ (14) 
.Ir l if i  NONBASIC and x,[LP k] = 

Similarly, if i ~ BASIC k and no basis change occurs, then increasing the flow on 
arc i by one unit requires either (1) a unit decrease in flow on an arc contained in 
THU~;  or (2) a unit increase in flow on an arc contained in HTL~; and the cost 
associated with this flow change is given by the reduced cost of the arcs in these 
two subsets. On the other hand, if i E NONBASIC k, then the cost associated with 
a unit increase in the flow on arc i is the reduced cost of arc i if x~[LP k] = l~; 
and infinity if x~[LP k] = u~. Thus, /3~, the rate of increase in OBJFCTN 
[POSTOPTLP~] as ~ changes from 0 to 0 + is given by 

[ Min(Ir l : j  THUf U HTL } if i ~ B A S I C  k 

/ 3k = r/k if i E N O N B A S I C  k and x i [LP  k] = I k (15) 
if i E NONBASIC k and xi[LP k] = u~. 

Note  that,  once program LP k has been solved, then the rates a/k and/3/k can be 
determined with very little additional computational effort. The next two sec- 
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tions discuss procedures that use these rates to obtain a lower bound to 
OBJFCTN[MIP k] that can be significantly tighter than OBJFCTN[LPk]. 

4. Up and Down Penalties 

This section specializes, for program MIP k, the "up and down" penalties de- 
veloped by Driebeek [9]. This well-known procedure is briefly recapitulated here 
because it is incorporated into the stronger bounds developed in the next section. 

The concept of Driebeek's penalty procedure applied to program MIP k is as 
follows: if, for any arc i E FREE, the optimal value of decision variable, Yi, is 
frictional in program LP e, then the value of OBJFCTN[LP k] might be increased 
(i.e., "penalized") by forcing yi to be zero or one; and this penalized objective 
function value will be a lower bound to OBJFCTN [MIP k] that is at least as tight 
as OBJFCTN[LP*]. Note that, although it was intended only for the initial 
subprogram MIP ~ Driebeek's penalty method can be applied to any subprogram 
MIP k for k = 0, 1, 2 , . . . .  

To analyze the penalty associated with an arc i E FREE whose decision variable 
y,. is fractional-valued in the optimal solution to LP ~, consider a new linear 
program, denoted PENLP~, formed by adding the single constraint 

Yi = Y~[ LPk] + A/k (16) 

to program LP k. In this constraint, y~[LP k] is the optimal value of Yi in program 
LP k and A/k is a fixed number. If A~ changes from 0 to 0- (i.e., to a small negative 
value), then one of two possible changes to the solution of program LP ~ will 
occur: (1) the flow on arc i will remain at x~[LPk]; or (2) the flow on arc i will 
change (i.e., decrease) by A/k" (g/k + h/k). In the first case, the optimal solution of 
program PENLP/~ will shift from point 1 to point 2 in Figure 3 and the optimal 
objective function value of program PENLP/k will change from OBJFCTN[LP k] to 
OBJFCTN[LP ~] - A~.  ( gk i + h~)" (a i - c~). In the second case, the optimal solu- 
tion of program PENLP~ will shift from point 1 to point 3 in Figure 3 (with a 
corresponding shift in constraint (6d)) and the optimal objective function value 
will change from OBJFCTN[LP k] to OBJFCTN[LP k] - A~. (g/~ + h~). a~ (where 
a k is the marginal rate of change defined in eq. (14)). Thus, the penalty, denoted 
DOWN~, for forcing y~ down to zero must be at least as great as 

DOWN~ = yi[LP~] �9 (g~ + h~). Min{ai - ce k, a~}.  (17) 

Similarly, if A/k changes from 0 to 0 + (i.e., to a small positive value), then either 
(1) the flow on arc i will remain at xi[LPk]; or (2) the flow will change (i.e., 
increase) by A~-(g/~ + hk). In the first case, the optimal solution of program 
PENLP~ will shift from point 1 to point 4 in Figure 3 and the optimal objective 
function value of program PENLP/k will change from OBJFCTN[LP k] to 
OBJFCTN[LPk] + A/k. (g/k + h/~). (c/k _ b~). In the second case, the optimal solu- 
tion of program PENLP~ will shift from point 1 to point 5 (with a corresponding 
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shift in constraint (6d)) and the optimal objective function value will change from 
OBJFCTN[LP ~] to OBJFCTN[LP k] + A 2 �9 (g2 + hk)" /32 (where/32 is the margi- 
nal rate of change defined in eq. (15)). Thus, the penalty, denoted UP2, for 
forcing Yi up to one must be at least as great as 

UP 2 = (1 - Yi[LPk]) �9 (g2 + h2)" Min{c2 - bi, 1~2}" (18) 

Because, in the optimal solution to MIP k, every yi must be either O or 1, the 
"penalty" lower bound, denoted Z~EN, to OBJFCTN[MIP k] is given by 

= OBJFCTN[LP k] + Max {Min{DOWN2, UP2}} (19) ZpE N i~FREE 

The next section describes a procedure, which can be used in conjunction with 
the penalty method described above, to obtain a tighter lower bound. 

S. Simple Bound Improvement Procedure 

In contrast to the "up and down" penalty procedure summarized in Section 4 
(which concentrated on the binary decision variables {Yi}), the "simple bound 
improvement" (SBI) method presented here focuses on the continuous variables 
{xl}. In this section, we generalize Lamar and Sheffi's [26] and Lamar et al. [27] 
work on fixed charge problems. We also introduce a simplified computational 
procedure. 

The discussion below is divided into two parts. The first part develops the 
concept of the SBI procedure for MCCNF problems; and the second part shows 
that the parameters used in this procedure are easy to compute. 

5.1. CONCEPT 

Starting with the solution LP ~ (the relaxation of the initial subprogram), the SBI 
procedure evaluates the family of linear programming relaxations LP k for k = 1, 
2 , . . .  to obtain a successively tighter lower bound to OBJFCTN[MIP ~ (the 
optimal objective function value of the initial subprogram). The process uses 
Z~N c, the objective function value of an incumbent (i.e., feasible but not 
necessarily optimal) solution to the original problem, MCCNF. [The determina- 
tion of Zinc is discussed in Section 6.] Regardless of the value of Z~Nc, though, it 
must be the case that either (1) ZtNc>OBJFCTN[MIP~ or (2) Ziyc~ 
OBJFCTN[MIP~ Below, we consider each of these cases separately and then 
summarize the lower bound implied by these two cases. 

�9 Case 1: Incumbent Value Overestimates O B J F C T N [ M I P  ~ 

For the first case we assume that ZIN c > OBJFCTN[MIP~ For this case, we also 
assume that SOLUTION[MIP ~ (the optimal solution to the initial subprogram 
MIP ~ is contained in FEASIBLE[LP k] (the feasible region of relaxation Lpk). 
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[As explained at the end of Case 1, this assumption will always be true if 
Zin c > OBJFCTN[MIP~ The incumbent objective function value can be used to 
seek tighter bounds for the flow on any arc i EARC.  Let l/k+l and u k§ denote, 
respectively, these tighter lower and upper flow bounds for arc i. In order to 
determine the value of these tighter bounds, we once again consider the previous- 
ly defined linear program, POSTOPTLP~, formed by adding constraint (12) to 
program LP k. [In this subsection, however, we consider all possible values of 6~ 
rather than just those that are close to zero.] 

Starting with 6 k = 0, we first consider the effect of decreasing the value of 
6 k. From parametric RHS analysis, we know that if 6~ = 0 then OBJFCTN 
[POSTOPTLP~]=OBJFCTN[Lpk]; and that if 6~<0 ,  then OBJFCTN 
[POSTOPTLP~] i> OBJFCTN[Lpk]. We continue decreasing the value of 6 k until 
either (1) 6 2 = l ~ -  x;[LPk]; or (2) OBJFCTN[POSTOPTLP~] = ZIN c. We then 
set -i lk+a = xi[ LP~] + 6k. Observe that if 6~ = l~ - xi[Lpk], then l~ +1 is simply l~ 

0 ~ k + l  and since (by assumption) xi[MIP ~ l/k, this means that xi[MIP ] ~ I i . On the 
other hand, if OBJFCTN[POSTOPTLP k] = ZrN C (and, by assumption, zin C > 
OBJFCTN[MIP~ then xi[MIP ~ cannot be less than xi[LP k] + 6k i, SO it must be 
true that xi[ MIP~ ~- i  >- lk+~. Thus, in either case, l k+~ is a lower bound to xi[MIP~ 

Once again starting with 6 k =0,  we now consider the effect of increasing 
the value of 6 k. Clearly, if 6k>0 ,  then OBJFCTN[POSTOPTLpk]m 
OBJFCTN[Lpk]. We continue increasing 6~ until either (1) ~k = U~ -- x~[Lpk]; or 
(2) OBJFCTN[POSTOPTLP k] = ZIN c. We then set u k+l = xi[LP k] + 6k. Observe 

k + l  = u k  that, if ~ = u~-x,[LP~],  then u i i, so xi[MIP~ Moreover, if 
OBJFCTN[POSTOPTLP~]=z~Nc, then once again it must be true that 
xi[MIP ~ ~ u~ +~. Thus, in either case, uf § is an upper bound to xi[MIP~ 

By performing the analysis outlined in the preceding paragraphs for each arc 
i ~ ARC, we obtain a set of tighter flow bounds {/k+l} and {u~+~}. Using these 
bounds, we then solve program LP k+I. 

As mentioned at the beginning of Case 1, we assume that SOLUTION 
[MIP ~ E FEASIBLE[LPk]. This will certainly be true for k = 0 because LP ~ is the 
linear programming relaxation of MIP ~ Moreover, we have shown above that if 
ZIN C > OBJFCTN[MIP ~ and l~ ~< xi[MIP ~ ~< u~ for all i, then it must be true that 
lk+l <~xi[Mip0]~<u~+i for all i. Thus, by mathematical induction, if Z~NC> 
OBJFCTN[MIP~ then it must be true that SOLUTION[MIP ~ 
FEASIBLE[LP k] for all k. 

Driebeek's penalty lower bound can also be used in conjunction with the 
k + l  ~ r r k + l  k SBI procedure. Using eq. (19), we set ZeeN~maXtzpzN, ZPEN}. Observe 

that FEASIBLE[LP~+~]C_FEASIBLE[LP ~] which, in turn, implies that 
k+~ will be strictly OBJFCTN[LP ~+1]/> OBJFCTN[Lpk]. Thus, in many cases, ZpE N 

k Furthermore, because SOLN[MIP ~ E FEASIBLE[LP k] and greater than zee N. 
SOLUTION[MIP~ it must be true that SOLUTION 
[MIP ~ -= SOLUTION[MIP k] ---- SOLUTION[MIPk+~]. So, not only is the initial 

0 k penalty bound, ZpeN, a lower bound to OBJFCTN[MIP~ but so are zp~ N and 
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k + l  
ZPENo Thus, if ZIN c > OBJFCTN[MIP~ then the following relationships hold: 

0 k k + l  
Z p E  N ~ Z p E  N ~ Z p E  N ~ OBJFCTN[MIP~ (20) 

This completes the discussion of the first case in which it is assumed that 
zin c > OBJFCTN[MIP~ 

�9 Case 2: Incumbent Value Does Not  Overestimate O B J F C T N [ M I P  ~ 

For completeness, we now consider the second case in which it is assumed that 
zin c ~< OBJFCTN[MIP~ In this case, we simply note that ZIN c itself is a lower 
bound to OBJFCTN[MIP~ 

�9 Lower Bound  

The two cases given above can be combined to develop a lower bound to 
OBJFCTN[MIP~ Observe that, for any incumbent objective function value, if 
ZINC itself is not a lower bound to OBJFCTN[MIP~ then ZpE N must be. Thus, we 
define a new lower bound, referred to as the "simple bound improvement" lower 

k+~ bound and denoted as Zsu I , to OBJFCTN[MIP ~ as follows: 

k + l  �9 k + l  
Zsu I = Mm{ZpE N, ZINC}. (21) 

0 Note that, because of relationships (20) if ZIN c is greater than zpzN, then the SBI 
procedure produces a stronger lower bound to the optimal objective function 
value of the initial subprogram than Driebeek's penalty method used alone (i.e., 

k§ is tighter than zOEr~). For the SBI procedure to be useful, however, the lower ZSBI  
k + l  and upper flow bounds, l/k § and u~ , must be easy to compute. This result is 

shown next. 

5.2. COMPUTATION OF IMPROVED FLOW BOUNDS 

An important step in the SBI procedure is the efficient computation of the 
improved lower and upper flow bounds, {l/k+1} and {u/k+1}. Note that although 
tighter flow bounds can be sought for any arc i E ARC,  the only arcs for which 
the linear underestimator strictly underestimates the concave cost function, 
COSTi, are the arcs contained in set IMPROVE k, where 

IMPROVE k = {i:  i ~ FREE and l k < mi < uk}. (22) 

Thus, if i ~ I M P R O V E  k, then -i lk+~ and u/k +~ can simply be set to I k and u/k, 
respectively. 

On the other hand, if arc i E IMPROVE k, then, as discussed in Subsection 5.1, 
the determination of l k§ and k§ requires a RHS parametric analysis of eq. (12) - i  Ui 

in program POSTOPTLP/k. For instance, the dotted line in Figure 4 shows a 
typical change in OBJFCTN[POSTOPTLP/k] as the parameter ~k is varied. A 
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complete parametric analysis of this constraint would, of course, be computation- 
ally burdensome. But, as explained in Subsection 3.2, a k and ilk, the rate of 
change in OBJFCTN[POSTOPT k] for an incremental change in ~k i, can be 
determined directly from the solution to LP k (see eq. (14) and (15)). Thus, an 
underestimator of l T M  and an overestimator of u~ § can be obtained with very 
little additional computational effort. 

Specifically, if a/k = 0 t h e n  i/k+1 = l~, otherwise, as indicated in Figure 4, 

lk+l= Max{l/k xi[LPX]_ [ ZiNc-OBJFCTN[ LPk] ]} (23) 
i , O~ 

where " [ e l "  denotes the "floor" function for any expression e (i.e., the largest 
integer less than or equal to e). Moreover, if/3~ = 0, then uk+Ii = u~, otherwise 

ugi +1 =Min{uki,xi[LPk]+ [ zINc - OBJFCTN[LPk] ]} (24) 

We assume, in eq. (23) and (24), that ZIN c ~> OBJFCTN[LPk]. This is because, if 
ZINC <OBJFCTN[LP~], then SOLUTION[MCCNF] cannot be contained in 
FEASIBLE[MIP k] and hence there is no need to evaluate program MIP k any 
further. 

The tighter bounds developed in this section form an integral part of the branch 
and bound procedure outlined next. 

6. B r a n c h  and B o u n d  P r o c e d u r e  

The branch and bound procedure described in this section solves program 
MCCNF (or determines that the problem is infeasible). The distinguishing feature 
between the standard branch and bound method (see, for example, [31] - denoted 
BBSTANDARD - and the one presented in this section - denoted BBSBI - is the 
incorporation of the SBI procedure to generate a tighter bound to the current 
subprogram. 

The following paragraphs comment on each of the steps in the branch 
and bound flowchart shown in Figure 5. [The actual implementations of 
BBSTANDARD and BBSBI (which are compared empirically in Section 7) are 
also discussed.] 

Step 0 initializes the branch and bound algorithm. Here, the initial subprogram 
MIP ~ at the root node in the enumeration tree is taken as the original problem, 
MCCNF, in which all arcs i E ARC are members of FREE; and sets ZERO and 
ONE are empty. Step 0 places program MCCNF in the "candidate list", denoted 
CAND. This list contains the subprograms that are evaluated in the branch and 
bound procedure. As mentioned in Section 5, we let Z~n c denote the objective 
function value of the current incumbent. Step 0 sets ZIN c to infinity. 

Steps l and 2 review the subprograms in CAND. If this list is empty, then the 
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Fig. 5. Flowchart for branch and bound procedure. 

branch and bound algorithm terminates and the current incumbent is the optimal 
solution to MCCNF. [If CAND is empty and there is no incumbent,  then 
MCCNF is infeasible.] If CAND is nonempty,  then a subprogram is selected to be 
the current initial subprogram, MIP ~ [In the computational tests conducted in 
Section 7, both B B S T A N D A R D  and BBSBI use a LIFO (rather than a priority) 
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subprogram selection rule because a LIFO selection rule minimizes the incore 
storage requirements for CAND. For BBSBI, if "backtracking" occurs in the 
enumeration tree in order to select the current subprogram, then the values of the 
initial lower and upper flow bounds, {10} and {u~ for arcs i E FREE are taken 
from the subprogram at the root node in the enumeration tree; otherwise these 
bounds are taken from the final iteration of the previously evaluated subprogram 
(i.e., from the "parent" subprogram). In this way, BBSBI requires no additional 
storage for the improved flow bound parameters.] 

In preparation for the SBI procedure, step 2 also sets the iteration index, k, to 
zero. [In Section 7, BBSTANDARD keeps k permanently set at zero.] 

Step 3 first computes the flow interval parameters, { g~} and {h~}, using eq. (1) 
and the objective function parameters, {c/k} and {fki},  using eq. (10). This step 
then solves LP ~, the linear programming relaxation of the current subprogram. 
Because this relaxation is a minimum (linear) cost network flow problem (see 
Section 3), program LP k can be solved very efficiently. (See [4] for a discussion of 
solution methods for this class of problems.) 

Step 4 seeks to find a new incumbent solution to MCCNF by obtaining a 
heuristic solution (see, for example, [35]) to the current subprogram, MIP ~ [In 
Section 7, both BBSTANDARD and BBSBI obtain a heuristic solution to MIP ~ 
with very little computational effort by simply setting Yi to zero (respectively, one) 
for any arc i such that xi[LP k] is less than or equal to (respectively, greater than) 
mi: This "rounding" technique always produces a feasible solution to MIP ~ and 
hence, a feasible solution to MCCNF]. If the objective function value of the 
heuristic solution obtained in step 4 is less than zin c (the objective function value 
of the current incumbent), then this heuristic solution is retained as the incum- 
bent solution and the value of Z~n c is updated. 

Step 5 computes a lower bound to OBJFCTN[MIP ~ using the penalty and SBI 
procedures described in Sections 4 and 5. Here, the penalties, DOWN/k and UP/k, 
defined in eq. (17) and (18), are used to compute Driebeek's penalty lower 

k defined in eq. bound, ZPEN,k defined ineq.  (19). Then, the SBI lower bound, ZSBI, 
(21), is calculated. [In Section 7, BBSTANDARD does not compute k ZSB I -] 

r k+l-~ Step 6 computes the tighter lower and upper flow bounds, {l~+~} and rUe ). If 
i ~ I M P R O V E  k (see eq. (22)), then step 6 sets l~+1 ~--1~ and k+x u~ ~-- u~. Other- 
wise, if i E IMPROVE k, then this step uses eq. (23) and (24) to compute the 
improved flow bounds. [In Section 7, BBSTANDARD omits this step.] 

Step 7 tests whether or not the SBI lower bound - computed in step 5 - equals 
k then this means that the incumbent objective function value, zin c. If ZSB I = ZXN c, 

ZPENk ~ ZINC (see eq. (21)), so program MIP ~ cannot contain a feasible solution to 
MCCNF that is better than the current incumbent. In other words, program MIP k 
can be "fathomed". Therefore, if ZSB I = ZINC, then the branch and bound 
algorithm goes to step 1 to review the subprograms contained in CAND; 
otherwise the algorithm goes to step 8. [In Section 7, BBSTANDARD tests 

0 in this step.] whether or not ZpE N i> Z~N c 
Step 8 tests whether or not additional effort should be expended on determin- 
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ing an improved lower bound for the current subprogram. Note that if there is an 
arc i ~ IMPROVEk such that (1) l/k < x/~ < u/k; (2) l/k +1 > l/k or u/k +, < u/k; and (3) 
a ~ > 0  and /3~>0; then OBJFCTN[LP k§ will be strictly greater than 
OBJFCTN[LPk]. Thus, if there is at least one arc that meets the conditions given 
above, then the iteration index, k, is incremented by one (i.e., k <--- k + 1) and the 
algorithm goes to step 3 to resolve the relaxation of the current subprogram. 
[Note that SOLUTION[LP k] E FEASIBLE[LPk+I]. Thus SOLUTION[LP ~] can 
be used as an initial basic feasible solution in program LP k§ In many cases 
SOLUTION[LP k] will be optimal or near-optimal in program LP g§ so program 
LP ~+~ can be solved with very little additional computational effort.] On the other 
hand, if there are no arcs that satisfy the conditions given above, then the 
algorithm goes to step 9 to separate the current subprogram. [In Section 7, 
BBSTANDARD omits this step and proceeds to step 9.] 

Finally, step 9 selects, from among the elements in arc set FREE, a "branching 
arc", denote L [In Section 7, both BBSTANDARD and BBSBI select, as arc ~, 
the arc with the maximum of min{DOWN~, UPS} (see eq. (17) and (18)).] Step 9 
adds to new subprograms - one in which arc Z is removed from FREE and added 
to ZERO,  and the other in which arc Z is removed from FREE and added to 
O N E -  to the candidate list, CAND. [In Section 7, the subprogram associated 
with maximum up and down penalty for arc iis referred to as the "twin" problem. 
The twin problem is added first to CAND in order to seek "good" heuristic 
solutions with the LIFO subprogram selection rule [28]. In addition, k ZTWlN , a 
lower bound to the optimal objective function of the twin problem, is also stored 

k in CAND. Here, ZTWIN is given by 

k = OBJFCTN[LP ~] + Max{DOWN~, UPS}. (25) ZTWlN 

If, when the twin problem is selected from CAND, z~N c is less than or equal to 
k then the twin problem can be fathomed without any further evaluation of ZTWIN, 

that problem.] After completing step 9, the branch and bound algorithm goes to 
step 1 to review the candidate list. 

The next section illustrates the use of the branch and bound algorithm 
described above. 

7. Computational Performance 

In this section we demonstrate empirically that, by incorporating the SBI proce- 
dure into a conventional branch and bound algorithm, both solution time and 
in-core memory requirements can be reduced. We do this by solving a series of 
MCCNF problems. As in Section 6, we let BBSBI and BBSTANDARD denote, 
respectively, the branch and bound procedure with and without the SBI proce- 
dure. Both algorithms were programmed in Microsoft Fortran version 4.1 and run 
on a Micro Source International microcomputer (comparable to an IBM-AT). 
Solution time was measured by the total CPU-time exclusive of I /O operations; 
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and in-core storage was measured by the maximum depth of the branch and 
bound enumeration tree. 

The material below is divided into two subsections. The first subsection uses a 
simple example to illustrate the effect that the SBI procedure has on computation- 
al performance; and the second subsection reports the computational results for a 
series of randomly generated test problems. 

7.1. E X A M P L E  

The four node, five arc MCCNF problem depicted in Figure 6 and Table II is 
taken from Florian and Robillard [11]. To illustrate the effect of the SBI 
procedure, we first solved this simple problem using BBSTANDARD, then 
resolved it using BBSBI. 

The enumeration tree associated with BBSTANDARD for this problem is 
shown in Figure 7a. The node numbers in the tree indicate the order in which the 
subprograms were solved. At node 1 the linear programming relaxation of the 
original mixed integer program, MCCNF, was solved using a network simplex 
algorithm. The solution to this relaxation was 3 units of flow on arc (1, 2); 3 on 

Supply 
3 

$ 

Supply 
6 

Fig. 6. Example network. 

Demand 
9 

Table II. Example cost and flow coefficients 

Arc i Marginal costs Flow bounds 

a i b i I i rni u~ 

(1, 2) 3 0 0 1 7 
(1 ,3)  4 1 0 1 5 
(2, 3) 5 2 0 1 3 
(2, 4) 6 3 0 1 6 
(3, 4) 8 5 0 1 4 
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Fig. 7. Example branch and bound enumeration trees: (a) using BBSTANDARD; (b) 
using BBSBI. 

(1, 3); 0 on (2, 3); 6 on (2, 4); and 3 on (3, 4). "Rounding" this solution produced 
an incumbent solution with an objective function value of zin c = 48.00. This 
incumbent solution was also the optimal solution to MCCNF. But, because the 

0 penalty lower bound was only z p z  N = 46.05, subprogram 1 could not be fathomed. 
Thus, using arc (1, 2) as the branching arc, two new subprograms-one with 
(1, 2) E ZERO and the other with (1,2) E ONE - were created and the process 

was repeated. 
In all, BBSTANDARD required the evaluation of three subprograms. [Note 

that subprograms 4 and 5 did not need evaluation because their stored penalty 
0 (see eq. (25)), exceeded ZiNc. ] The CPU time for this lower bound, ZTWIN 

algorithm was 0.11 seconds and the maximum depth for its enumeration tree was 
three. 

In contrast, as shown in Figure 7b, the enumeration "tree" for BBSBI consisted 
solely of the root node representing the original mixed integer program, MCCNF. 
As with BBSTANDARD, LP ~ the linear programming relaxation of this sub- 
program, was solved using a network simplex algorithm; the incumbent solution 
was obtained by "rounding-up" the relaxation solution; and the penalty lower 
bound was computed. However, in BBSBI the SBI procedure was then per- 
formed to generate tighter lower and upper flow bounds, {/~} and {u~}, and then 
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1 
program LP 1 was solved. This increased the penalty lower bound to ZVE N = 48.00 

(which equals ZiNc) so that the entire branch and bound enumerat ion tree was 

fa thomed at the root  node. 
Thus,  for BBSBI ,  the max imum depth in the enumerat ion tree was one. Two 

relaxations,  LP ~ and LP a, were solved, but the solution to LP 1 was trivial since the 
opt imal  solution to LP ~ was also optimal  in LP 1. The total CPU time was 0.05 

seconds. 
The  dominance of BBSBI  over  B B S T A N D A R D ,  brought  out in this example,  

is next examined in a series of  computat ional  tests. 

7.2. COMPUTATION TESTS 

In order  to evaluate the SBI procedure  more  fully, a series of  test problems was 
solved with B B S T A N D A R D  and BBSBI.  Below, we describe how the problems 

were  genera ted and comment  on the results of these two branch and bound 
algorithms. 

�9 P r o b l e m  G e n e r a t i o n  

As summarized in Table I I I ,  three sizes of M C C N F  problems were considered, 

each consisting of five randomly generated test networks. All networks were 
complete ;  i .e.,  there was a directed arc between every pair of nodes. R e m e m b e r  
that ,  because the arc cost functions for ore- problems were piecewise-linear- 

concave,  each arc in the network corresponded to a binary decision variable in 
p rog ram MCCNF.  Thus,  it is reasonable to characterize a network with over  200 
such arcs as a " la rge"  problem. 

For  each arc i E A R C  in each test problem,  the marginal costs a i and bi were 
randomly  sampled f rom a uniform distribution U N I F O R M [ 0 ,  100]. I f  a i > bi, 
then the values of  a i and b~ were interchanged. Also, for each arc i, the original 

flow bounds li, m i ,  and u i were sampled from UNIFORM[0 ,  100]. The values of 
I~, m~, and u~ were sorted so that  li ~< m~ ~< u~. For each test problem a node,  
denoted ri, was randomly selected. Then,  for each node n ~ N O D E -  {if}, the 
demand / supp ly  constant d n was sampled f rom U N I F O R M [ - 1 0 ,  +10]; and the 

demand / supp ly  constant for node ff was set such that the total demand and supply 
in the network summed to zero. 

Table III. Test problem characteristics 

Problem Size Number of Number of 
number nodes arcs 

1 to 5 Small 5 20 
6 to 10 Medium 10 90 

11 to 15 Large 15 210 
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�9 Results 

Each of the fifteen test problems identified in Table III was solved twice, first 
using BBSTANDARD, then using BBSBI. The results are shown in Tables IV 
and V. These tables show the average value and the range for the five test 
problems solved in each problem size. The results for BBSTANDARD and 
BBSBI are given; and the percent improvement of BBSBI over BBSTANDARD 
is reported. 

Table IV, giving the maximum depth in the branch and bound enumeration 
tree, indicates the relative in-core storage requirements for the test problems. In 
all cases, the SBI procedure reduced the storage requirements for the branch and 
bound algorithm. Comparing BBSBI with BBSTANDARD, there was, on aver- 
age, more than a two-thirds improvement for small problems, and more than a 
one-third improvement for large ones. Thus, although the amount of improve- 
ment decreased as the problem size increased, the overall reduction in in-core 
storage was still substantial. 

Table V reports the CPU time required to solve the test problems. Once again, 
the SBI procedure increased the efficiency of the branch and bound procedure. 
Moreover, this improvement increased as the problem size increased. Thus, 
comparing BBSBI with BBSTANDARD, there was, on average, more than a 
forty percent reduction in the time required to solve the large test problems. 

It should be pointed out, though, that for one test problem, problem 10, the 
CPU time for BBSBI was slightly greater than that for BBSTANDARD. For this 
particular test problem, BBSTANDARD required the evaluation of 65 sub- 
programs whereas BBSBI required the evaluation of 27 families of subprograms. 

Table IV. Test problem results: depth in enumeration tree 

Problem Depth in enumeration tree Percent 

size BBSTANDARD BBSBI improvement 

Range Avg. Range Avg. Range Avg. 

Small 2 to 5 4.5 1 to 2 1.2 +50to +80 +68 
Medium 12 to 15 13.0 1 to 10 5.6 +27 to +92 +57 
Large 29 to 32 27.0 21 to 22 17.4 +29 to +41 +36 

Table V. Test problem results: CPU time 

Problem CPU seconds a Percent 

size BBSTANDARD BBSBI improvement 

Range Avg. Range Avg. Range Avg. 

Small 0.2to 0.9 0.5 0.2to 0.7 0.4 +15 to +45 +21 
Medium 6.2 to 47.2 27.5 4.1 to 38.6 21.8 - 3  to +65 +27 
Large 320.5 to 1863.6 923.4 151.7 to 862.5 479.0 + 14 to +56 +44 

a Using a Micro Source International microcomputer (comparable to an IBM-AT). 
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But, because in BBSBI each family consisted of an average of three subprograms, 
this problem had an overall solution time of 34 seconds using BBSBI (compared 
to 33 seconds using BBSTANDARD).  Thus, we see from Table V, that although 
the SBI procedure cannot be guaranteed to reduce computation time of the 
branch and bound procedure, it will, on average, have a significant impact. 

8. Conclusions and Extensions 

This paper has presented a new branch and bound algorithm for minimum 
concave cost network flow problems with piecewise-linear arc cost functions. The 
distinctive feature of this algorithm is the incorporation of the simple bound 
improvement (SBI) method. As shown by the computational tests conducted in 
Section 7, the SBI procedure reduces both the CPU time and the in-core storage 
requirements of the branch and bound algorithm. 

In closing, three alternative implementations of the SBI procedure are worth 
noting. First, although the SBI procedure discussed in this paper was used in 
conjunction with Driebeek's [9] penalty bounds, other penalty procedures (see, 
for example, [34] and [8]) could also be used instead. In this case, the SBI 
procedure would produce tighter bounds for each subprogram evaluated in the 
branch and bound, but with somewhat increased computational effort. 

Second, when a program was selected by backtracking in the candidate list in 
the branch and bound procedure described in this paper, the lower and upper 
flow bounds for arcs in set FREE were set to the values determined in the root 
node subprogram. In this manner, no additional storage requirement for the 
improved arc flow bounds was required. An alternative implementation of the 
branch and bound algorithm would be to store the improved arc flow bounds 
along with each of the subprogram in the candidate list. Then, because the initial 
flow bounds of each subprogram would be tighter, less computational effort 
would be required for evaluating each subprogram, but at the cost of increased 
in-core storage. 

Finally, this paper has focused on the SBI procedure for network flow problems 
with piecewise-liner-concave arc cost functions. We point out, however, that the 
SBI procedure is also applicable to problems with more general objective 
functions as well as to problems involving constraints other than network flow 
constraints (see [25]). 
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